59 research outputs found

    Proactive Ethical Design for Neuroengineering, Assistive and Rehabilitation Technologies: the Cybathlon Lesson.

    Get PDF
    Rapid advancements in rehabilitation science and the widespread application of engineering techniques are opening the prospect of a new phase of clinical and commercial maturity for Neuroengineering, Assistive and Rehabilitation Technologies (NARTs). As the field enters this new phase, there is an urgent need to address and anticipate the ethical implications associated with novel technological opportunities, clinical solutions, and social applications. In this paper we review possible approaches to the ethics of NART, and propose a framework for ethical design and development, which we call the Proactive Ethical Design (PED) framework. A viable ethical framework for neuroengineering, assistive and rehabilitation technology should be characterized by the convergence of user-centered and value-sensitive approaches to product design through a proactive mode of ethical evaluation. We propose four basic normative requirements for the realization of this framework: minimization of power imbalances, compliance with biomedical ethics, translationality and social awareness. The aims and values of the CYBATHLON competition provide an operative model of this ethical framework and could drive an ethical shift in neuroengineering and rehabilitation

    Applying a Precautionary Approach to Mobile Contact Tracing for COVID-19: The Value of Reversibility

    Get PDF
    The COVID-19 pandemic presents unprecedented challenges to public health decision-making. Specifically, the lack of evidence and the urgency with which a response is called for, raise the ethical challenge of assessing how much (and what kind of) evidence is required for the justification of interventions in response to the various threats we face. Here we discuss the intervention of introducing technology that aims to trace and alert contacts of infected persons-contact tracing (CT) technology. Determining whether such an intervention is proportional is complicated by complex trade-offs and feedback loops. We suggest that the resulting uncertainties necessitate a precautionary approach. On the one hand, precautionary reasons support CT technology as a means to contribute to the prevention of harms caused by alternative interventions, or COVID-19 itself. On the other hand, however, both the extent to which such technology itself present risks of serious harm, as well as its effectiveness, remain unclear. We therefore argue that a precautionary approach should put reversibility of CT technology at the forefront. We outline several practical implications

    Brain data:Scanning, scraping and sculpting the plastic learning brain through neurotechnology

    Get PDF
    Neurotechnology is an advancing field of research and development with significant implications for education. As 'postdigital' hybrids of biological and informational codes, novel neurotechnologies combine neuroscience insights into the human brain with advanced technical development in brain imaging, brain-computer interfaces, neurofeedback platforms, brain stimulation and other neuroenhancement applications. Merging neurobiological knowledge about human life with computational technologies, neurotechnology exemplifies how postdigital science will play a significant role in societies and education in decades to come. As neurotechnology developments are being extended to education, they present potential for businesses and governments to enact new techniques of 'neurogovernance' by 'scanning' the brain, 'scraping' it for data and then 'sculpting' the brain toward particular capacities. The aim of this article is to critically review neurotechnology developments and implications for education. It examines the purposes to which neurotechnology development is being put in education, interrogating the commercial and governmental objectives associated with it and the neuroscientific concepts and expertise that underpin it. Finally, the article raises significant ethical and governance issues related to neurotechnology development and postdigital science that require concerted attention from education researchers

    Older People’s Needs and Opportunities for Assistive Technologies

    Get PDF
    Older adults experience a disconnect between their needs and adoption of technologies that have potential to assist and to support more independent living. This paper reviewed research that links people’s needs with opportunities for assistive technologies. It searched 13 databases identifying 923 papers with 34 papers finally included for detailed analysis. The research papers identified needs in the fields of health, leisure, living, safety, communication, family relationship and social involvement. Amongst these, support for activities of daily living category was of most interest. In specific sub-categories, the next most reported need was assistive technology to support walking and mobility followed by smart cooking/kitchen technology and assistive technology for social contacts with family member/other people. The research aimed to inform a program of research into improving the adoption of technologies where they can ameliorate identified needs of older people

    An Evaluation Schema for the Ethical Use of Autonomous Robotic Systems in Security Applications

    Full text link

    Hacking the brain: Brain-computer interfacing technology and the ethics of neurosecurity

    No full text
    Brain-computer interfacing technologies are used as assistive technologies for patients as well as healthy subjects to control devices solely by brain activity. Yet the risks associated with the misuse of these technologies remain largely unexplored. Recent findings have shown that BCIs are potentially vulnerable to cybercriminality. This opens the prospect of "neurocrime": extending the range of computer-crime to neural devices. This paper explores a type of neurocrime that we call brain-hacking as it aims at the illicit access to and manipulation of neural information and computation. As neural computation underlies cognition, behavior and our self-determination as persons, a careful analysis of the emerging risks of malicious brain-hacking is paramount, and ethical safeguards against these risks should be considered early in design and regulation. This contribution is aimed at raising awareness of the emerging risk of malicious brain-hacking and takes a first step in developing an ethical and legal reflection on those risks

    Reply to "Separating neuroethics from neurohype"

    No full text
    Item does not contain fulltext2 p

    Author correction: Brain leaks and consumer neurotechnology

    No full text
    An amendment to this paper has been published and can be accessed via a link at the top of the paper

    From Healthcare to Warfare and Reverse: How Should We Regulate Dual-Use Neurotechnology?

    No full text
    Recent advances in military-funded neurotechnology and novel opportunities for misusing neurodevices show that the problem of dual use is inherent to neuroscience. This paper discusses how the neuroscience community should respond to these dilemmas and delineates a neuroscience-specific biosecurity framework. This neurosecurity framework involves calibrated regulation, (neuro)ethical guidelines, and awareness-raising activities within the scientific community
    corecore